GATE Examinations Courses Syllabus

Syllabus

Mathematical Physics section_1

Syllabus
Mathematical Physics covering Linear Vector Spaces, Matrices, Differential Equations, Special Functions, Complex Analysis, Integral Transforms, and Tensor Calculus
Core concepts (8)
  • Linear Vector Spaces
  • Matrix Theory
  • Second Order Linear Differential Equations
  • Complex Analysis
  • Residue Theorem
  • Laplace Transform
  • Fourier Analysis
  • Tensor Calculus
Related concepts (10)
  • Inner Product Spaces
  • Eigenvalue Algorithms
  • Green's Functions
  • Sturm-Liouville Theory
  • Analytic Continuation
  • Conformal Mapping
  • Integral Representations
  • Spectral Methods
  • Differential Geometry
  • Special Relativity Applications

Classical Mechanics section_2

Syllabus
Classical Mechanics: Lagrangian Formulation (D'Alembert's principle, Euler-Lagrange equation, Hamilton's principle, calculus of variations), Symmetry and conservation laws, Central force motion (Kepler problem and Rutherford scattering), Small oscillations (coupled oscillations and normal modes), Rigid body dynamics (inertia tensor, orthogonal transformations, Euler angles, Torque-free motion of a symmetric top), Hamiltonian and Hamilton's equations of motion, Liouville's theorem, Canonical transformations (action-angle variables, Poisson brackets, Hamilton-Jacobi equation), Special Theory of Relativity (Lorentz transformations, relativistic kinematics, mass-energy equivalence)
Core concepts (8)
  • Lagrangian Mechanics
  • Hamiltonian Mechanics
  • Rigid Body Dynamics
  • Special Relativity
  • Central Force Motion
  • Small Oscillations
  • Canonical Transformations
  • Conservation Laws
Related concepts (15)
  • Calculus of Variations
  • D'Alembert's Principle
  • Hamilton's Principle
  • Noether's Theorem
  • Inertia Tensor
  • Euler Angles
  • Liouville's Theorem
  • Poisson Brackets
  • Hamilton-Jacobi Equation
  • Action-Angle Variables
  • Lorentz Transformations
  • Four-Vectors
  • Kepler Problem
  • Rutherford Scattering
  • Normal Modes

Electromagnetic Theory section_3

Syllabus
Electromagnetic Theory - Electrostatics and Magnetostatics, Maxwell's Equations, Wave Propagation, Boundary Interactions, Energy Transport, and Radiation Phenomena
Core concepts (6)
  • Electrostatics and Magnetostatics
  • Maxwell's Equations
  • Electromagnetic Wave Propagation
  • Wave-Boundary Interactions
  • Electromagnetic Energy and Momentum
  • Radiation Theory
Related concepts (8)
  • Vector Calculus
  • Partial Differential Equations
  • Boundary Value Problems
  • Complex Analysis
  • Fourier Analysis
  • Material Properties
  • Gauge Theory
  • Special Relativity

Quantum Mechanics section_4

Syllabus
Section 4: Quantum Mechanics - Postulates of quantum mechanics, uncertainty principle, Schrodinger equation, Dirac Bra Ket notation, linear vectors and operators in Hilbert space, one dimensional potentials (step potential, finite rectangular well, tunneling, particle in a box, harmonic oscillator), two and three dimensional systems with degeneracy, hydrogen atom, angular momentum and spin, addition of angular momenta, variational method, WKB approximation, time independent perturbation theory, elementary scattering theory, Born approximation, and symmetries in quantum mechanical systems
Core concepts (12)
  • Postulates of Quantum Mechanics
  • Schrodinger Equation
  • Hilbert Space Formalism
  • Uncertainty Principle
  • Particle in a Box
  • Quantum Harmonic Oscillator
  • Hydrogen Atom
  • Angular Momentum Operators
  • Spin
  • Time-Independent Perturbation Theory
  • Variational Principle
  • Scattering Theory
Related concepts (16)
  • Wave-Particle Duality
  • Probability Density and Normalization
  • Hermitian Operators
  • Commutators
  • Tunneling Phenomenon
  • Degeneracy
  • Spherical Harmonics
  • Radial Wavefunctions
  • Clebsch-Gordan Coefficients
  • WKB Approximation
  • Born Approximation
  • Parity and Symmetry Operations
  • Selection Rules
  • Eigenstates and Eigenvalues
  • Boundary Conditions
  • Continuity and Discontinuity Conditions

Thermodynamics and Statistical Physics section_5

Syllabus
Section 5: Thermodynamics and Statistical Physics - Laws of thermodynamics; Macrostates and microstates; phase space; Ensembles; Partition function, free energy, calculation of thermodynamic quantities; Classical and quantum statistics; Degenerate Fermi gas; Black body radiation and Planck's distribution law; Bose-Einstein condensation; First and second order phase transitions, phase equilibria, critical point
Core concepts (11)
  • Laws of Thermodynamics
  • Microstates and Macrostates
  • Phase Space
  • Statistical Ensembles
  • Partition Function
  • Free Energy
  • Classical Statistics
  • Quantum Statistics
  • Fermi-Dirac Statistics
  • Bose-Einstein Statistics
  • Phase Transitions
Related concepts (12)
  • Thermodynamic Equilibrium
  • Entropy and Second Law
  • Thermodynamic Potentials
  • Maxwell Relations
  • Density of States
  • Chemical Potential
  • Planck Distribution
  • Fermi Energy and Fermi Surface
  • Heat Capacity
  • Phase Diagrams
  • Order Parameters
  • Fluctuations

Atomic and Molecular Physics section_6

Syllabus
Section 6: Atomic & Molecular Physics - Spectra of one- and many-electron atoms, spin-orbit interaction (LS and jj couplings), fine and hyperfine structures, Zeeman and Stark effects, electric dipole transitions and selection rules, rotational and vibrational spectra of diatomic molecules, electronic transitions in diatomic molecules, Franck-Condon principle, Raman effect, EPR, NMR, ESR, X-ray spectra, lasers (Einstein coefficients, population inversion, two and three level systems)
Core concepts (14)
  • Atomic Spectra
  • Spin-Orbit Coupling
  • Fine and Hyperfine Structure
  • Zeeman Effect
  • Stark Effect
  • Electric Dipole Transitions
  • Rotational Spectra
  • Vibrational Spectra
  • Electronic Transitions in Molecules
  • Franck-Condon Principle
  • Raman Effect
  • Magnetic Resonance Spectroscopy
  • X-ray Spectra
  • Laser Physics
Related concepts (15)
  • Quantum Mechanical Angular Momentum
  • Perturbation Theory
  • Term Symbols
  • Molecular Orbitals
  • Born-Oppenheimer Approximation
  • Rigid Rotor and Harmonic Oscillator
  • Selection Rules
  • Group Theory in Spectroscopy
  • Transition Dipole Moments
  • Einstein A and B Coefficients
  • Population Inversion
  • Cavity Resonators
  • Boltzmann Distribution
  • Line Broadening Mechanisms
  • Molecular Symmetry

Solid State Physics section_7

Syllabus
Section 7: Solid State Physics - Comprehensive coverage of crystallography, electronic structure, transport properties, optical, dielectric, magnetic properties, and superconductivity
Core concepts (14)
  • Crystal Structure
  • Diffraction Methods
  • Bonding in Solids
  • Lattice Vibrations
  • Thermal Properties
  • Free Electron Theory
  • Band Theory
  • Electronic Classification
  • Charge Transport
  • Optical Properties
  • Dielectric Properties
  • Magnetic Properties
  • Magnetic Domains
  • Superconductivity
Related concepts (20)
  • Crystallographic Point Groups
  • Reciprocal Lattice
  • Ewald Sphere
  • Anharmonic Effects
  • Phonon Scattering
  • Bloch Theorem
  • Energy Gap Formation
  • Semiconductor Physics
  • Carrier Statistics
  • Optical Transitions Selection Rules
  • Excitons
  • Clausius-Mossotti Relation
  • Spontaneous Polarization
  • Exchange Interaction
  • Spin Waves
  • Critical Phenomena
  • Josephson Effect
  • High-Temperature Superconductors
  • Semiconductor Devices
  • Spintronics

Electronics section_8

Syllabus
Section 8: Electronics - Semiconductor Fundamentals, Metal-Semiconductor Junctions, Semiconductor Devices, Analog Circuits, Digital Electronics
Core concepts (15)
  • Semiconductor Physics
  • Metal-Semiconductor Junctions
  • PN Junction Diodes
  • Bipolar Junction Transistors
  • Field Effect Transistors
  • Feedback Circuits
  • Operational Amplifiers
  • Active Filters
  • Oscillators
  • Digital Logic Circuits
  • Combinational Circuits
  • Sequential Circuits
  • Timers and Counters
  • Registers
  • Data Conversion
Related concepts (11)
  • Band Theory of Solids
  • Drift and Diffusion
  • Continuity Equation
  • Small Signal Analysis
  • Frequency Response
  • Power Supplies
  • Noise in Electronic Circuits
  • CMOS Technology
  • Timing Analysis
  • Memory Circuits
  • Sampling Theory

Nuclear and Particle Physics section_9

Syllabus
Section 9: Nuclear Physics - Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments, Semi-empirical mass formula, Nuclear models (liquid drop model, nuclear shell model), Nuclear force and two nucleon problem, Alpha decay, beta-decay, electromagnetic transitions in nuclei, Rutherford scattering, nuclear reactions, conservation laws, Fission and fusion, Particle accelerators and detectors, Elementary particles (photons, baryons, mesons and leptons), Quark model, Conservation laws, isospin symmetry, charge conjugation, parity and time-reversal invariance
Core concepts (19)
  • Nuclear Structure
  • Semi-Empirical Mass Formula
  • Liquid Drop Model
  • Nuclear Shell Model
  • Nuclear Forces
  • Alpha Decay
  • Beta Decay
  • Gamma Transitions
  • Nuclear Reactions
  • Rutherford Scattering
  • Fission
  • Fusion
  • Particle Accelerators
  • Radiation Detectors
  • Elementary Particle Classification
  • Quark Model
  • Conservation Laws
  • Isospin Symmetry
  • Discrete Symmetries
Related concepts (16)
  • Quantum Mechanics
  • Angular Momentum Theory
  • Electromagnetic Theory
  • Statistical Mechanics
  • Group Theory
  • Relativistic Quantum Mechanics
  • Fermi Gas Model
  • Tunneling Phenomenon
  • Weak Interaction Theory
  • Cross Section Formalism
  • Reaction Kinematics
  • Chain Reactions
  • Plasma Physics
  • Ionization and Excitation
  • Standard Model
  • CPT Theorem